A. Y	TANTA UNIVERSITY- Faculty of Science - Department of Physics						
	EXAM FOR 4 TH YEAR STUDENTS						
1968	COURSE TITLE:	Detectors	and Accelerator Physics	COURSE CODE: PH4163			
DATE:	20 MAR 2021	TERM: SUMMER	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS			

Question one (25 points)

Derive the following:

- 1- The phase space ellipse equation
- 2- The transfer matrix for a dipole magnet
- 3- Cyclotron condition

Question two (25 points)

Write about the following:

- 1- Photomultiplier tube
- 2- Output pulse versus voltage for gaseous detectors.
- 3- The Tandem accelerator

Question three (25 points)

Give the reason for the following:

- 1- Dark current in photomultipliers
- 2- Synchrotron cannot accelerate particles from zero energy
- 3- Some of the inorganic crystals are put in a protective enclosure
- 4- The cyclotron frequency is constant and does not depend on the particle velocity
- 5- In gaseous scintillation detectors, the inner wall of the photo multiplier is coated by a wavelength shifter

Please turn the page for the other questions

Question four (25 points)

Α-	Comp	lete	the	fol	lov	ving

- B- Calculate the magnetic field, B and the Dee radius of a cyclotron which will accelerate protons to a maximum energy of 5 MeV if a radio frequency of 8 MHz is available. (Mass of proton = 1.67×10^{-24} g)

11- Coherent radiation is proportional to

12- The is tunable in FEL.

BEST WISHES

1969

طنطا	جامعة
العلوم	کلیة ۱
فيزياء	قسم ال
المستوى الرابع	PH4113
Date: 13/3/2021	Final exam – First semester
شعبة الفيزياء	Total mark =100
ا.د/ماجدة ذكي سعيد د/فاطمة الزهراء فخري فهمي	Physical electronics

First question:

1- Explain the PN junction theory then the forward and the revise bias PN junctions.

[10 marks]

2- State the types of:

[15 marks]

- a) periodic structure.
- b) cubic lattice.
- c) Bonding.

Second question:

1- Discuss the Pauli exclusion principle.

[10 marks]

2- What is the extrinsic material and Explain their types?

[15 marks]

Third question:

1- What is the behavior of excess carriers in semiconductors?

[10 marks]

2- Find the difference between:

[15 marks]

- a) Bonding energy level Antibonding energy.
- b) Photoluminescence Cathodoluminescence Electroluminescence.
- c) Drift Diffusion.

Fourth question:

3- State the reasons of:

[10 marks]

- a) The electronic and optical properties of semiconductor materials are strongly affected by impurities.
- b) Silicon has a band gap about 1.1 eV while the diamond has about 5 eV.
- 4- Discuss and draw the electron orbitals of Silicon atom.

[15 marks]

Good luck

AG WY	7	ANTA UNIVERSIT	ΓΥ- Faculty of Science - Department of	of Physics			
	أمتحان المستوي الرابع - شعبة الفيزياء						
1964	COURSE TITLE:		الكترونيات رقمية	COURSE CODE: PH4153			
DATE:	08 - 03 - 2021	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS			

1-	Write the symbol	, truth table and	Boolean exp	ression for each	of the	following ga	ates :
----	------------------	-------------------	-------------	------------------	--------	--------------	--------

AND, NAND, OR, XOR, NOR?

(25 Marks)

- 2- A-What we mean by comparator, explain 2 bits comparator?
 - B- What is the difference between Half adder and Full adder?

(25 Marks)

- 3- A- Explain the JKFlip Flop and its triggering.
 - B- How to use JKFlip Flop in the construction of ripple counter?

(25 Marks)

- 4- A- Explain the serial In serial Out shift register.
 - B- Write the binary bits the number 33.

(25 Marks)

	•
EVAMINED	DDOE MOOTHER DE NIERED
EXAMINER	PROF. MOSTAFA EL-NIMR
EZETETALITATE C	I ROTTINO MILITED THINK

© BEST WISHES ©

		TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSIC		
1.65	,	FINAL EXAMINATION OF 4TH YEAR PHYSICS STUDENTS		
COURSE TITLE:		Astronomy I	COURSE CODE: PH 4103	
11312021	TERM: FINAL	TOTAL ASSESSMENT MARKS:100	TIME ALLOWED: 2 HOURS	

Q1: Choose the correct answer (20 Mark	Q	1:	Choose	the	correct	answer	(20	Mark
---	---	----	--------	-----	---------	--------	-----	------

- 1. The planetary orbits are _____ as we move outward from the Sun.
- (a) closer (b) farther apart (c) evenly spaced (d) not changing
 - 2. Beyond the outermost planet, Neptune, lies _____.
- (a) the Kuiper belt (b) the planet Jupiter (c) the jovian planets (d) the terrestrial planets
 - 3. The troposphere is the part of the atmosphere in which convection occurs.
- (a) True (b) False
 - 4. Earth's core temperature is comparable to the surface temperature of the Sun.
- (a) True (b) False
 - 5. An aurora occurs when trapped electrons and protons in the magnetosphere collide with the upper atmosphere.
- (a) True (b) False
 - 6. There is no volcanic activity today on the surface of the Moon.
- (a) True (b) False
 - 7. Compared with the Moon, Mercury has
- (a) a much smaller core (b) a much larger core (c) a similar-sized core
 - 8. Most craters on the surface of Venus are the result of volcanism.
- (a) True (b) False
 - 9. Compared with Earth, Venus is
- (a) much smaller (b) much larger (c) about the same size 10. Jupiter is noticeably flattened due to its rapid rotation.
- (a) True (b) False

Q2:Put true or false and correct the false one(s): (20 Marks)

- 1. Jupiter emits less energy than it receives from the Sun.
- 2. There is no volcanic activity today on the surface of the Moon.
- 3. Earth's core temperature is comparable to the surface temperature of the Sun.
- 4. Earth's magnetic field is the result of our planet's large, permanently magnetized iron core.
- 5. Mars has strong magnetic field.
- 6. Europa is one of the Mercury largest moons.
- 7. Craters on the Moon and Mercury are primarily the result of volcanic activity.
- 8. Martian atmosphere is mostly nitrogen.
- 9. Titan is the largest moon of Mars.
- 10. Mercury's solar day is longer than its solar year.

Q3:- (30 Marks)

Explain briefly:

- (1) What causes the colors in Jupiter's atmosphere.
- (2) How the Moon produces tides in Earth's oceans.
- (3) The main differences between terrestrial and jovian planets.

Q4:- (30 Marks)

. 9

- 1. What is the greenhouse effect, and what effects does it have on Earth's surface temperature?
- 2. a- Give a description of Earth's magnetosphere (with drawing) and explain what will happen to Earth if it is not exist.
- 3. Venus is a victim of a runaway greenhouse effect.

(Best wishes ----- Dr. Yasser Abdou)

1969

جامعة طنطا				
كلية العلوم				
لفيزياء	قسم ا			
فيزياء- علوم مواد- فيزياء حيوي	امتحان لطلبة كلية العلوم الشعبة:			
الفرقة الرابعة	PH 4264 : كود المقرر			
Date: /12/2020	الزمن: ساعتان			

Question 1-

- a- True or false :(25 deg.)
- 1- Neutron activation analysis has been used to study the contamination of Nile River,
- 2- Ion beam technique is used to measure the weight of the target,
- 3- Mossbauer technique is special technique for copper.
- b- Write down about the applications of Mossbauer technique.

Question 2- Write down on :(25 deg.)

- a- "Nuclear analytical techniques still suitable for study samples in all fields of life", discuss.
- b- Complete the following sentences:
- 1- All nuclear analytical techniques contain three main parts,, and
- 2- XRF is a powerful technique to study

Question 3- (25 deg.)

- a- How can you choose a technique to use?
- b- Describe in brief ion beam analytical techniques and discuss their applications.

Question 4- (25 deg.)

- a- **Define:** Neutron activation analysis, nuclear analytical techniques, inelastic scattering, mean free path.
- b- Draw a chart for the future of nuclear analytical techniques?

With my pest wishes (Dr. Ahmed Amar)

	Tanta UNIVERSITY- FACULTY OF SCIENCE -DEPARTMENT OF PHYSICS						
Gr.		· .					
	COURSE TITLE:	:	Condensed Matter Physics منطلب تخرج دیسمبر 2020	COURSE CODE: PH4214			
DATE:	29-12-2020	TERM:	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS			

First Question:

(25 Marks)

- A. Discuss briefly according to Russell-Sanders Coupling and spin-orbit interaction, the precession of vectors L and S, and their moments around constant vector J.
- B-Name the chalcogen elements, then represent in the form of structural units for the following:
- The elemental Ge, and Selenium.
- The binary compound GeSe₂, and the ternary compound TlAsSe₂.

Second Question:

(25 Marks)

A- Find the relation which expresses the variation of the reduced magnetization with reduced temperature, and which depends exclusively on the the form $B_i(y)$ function.

B- Define the following

Glass transition, Curie, Néel, and compensation temperatures, Internal magnetic field, and Heisenberg exchange interaction between the atomic spins.

Third Question:

(25 Marks)

A- Give a short account on the behavior of the susceptibility of a piece of poly crystalline sample of an anti ferro magnetic material in a range

of temperatures between 0K- T_N K , and state the relation between the susceptibility \varkappa_{poly} and \varkappa_{11} and \varkappa_{L1} and \varkappa_{L2} at 0, T_N K.

B- Calculate the quantum numbers of the ground state of the 3d⁷, 4f⁵ ions, and the value of the Landé g-factor, then find their spectroscopic notations.

Forth Question:

(25 Marks)

A-Explain briefly the character behavior of any three physico-chemical properties of a glassy system containing two chalcogen elements that has been changed from dielectric binary chalcogenide system to a ternary glassy semi-conductor.

B- Write a Short note about the physical properties of amorphous metallic alloys (TM-M)

EXAMINER	PROF. HASSANEIN ELLABANY		
<u> </u>			

BEST WISHES

TANTA UNIVERSITY- Faculty of Science - Department of Physics							
EXAM FOR 4RD YEAR SCIENCE STUDENTS							
1969 COURSE TITLE:	LASER APPLICATIONS	COUESE CODE: PH 4224					
DATE: 31/12/2020	TERM: SECOND TOTAL ASSESSMENT MARKS: 50	TIME ALLOWED: 2 HR					

Answer all the questions

Question one

a-what are the basic components of laser?

b-Reflection coefficients of mirrors are 0.986 and 0.94 All loss in round trip is 0.5 %, calculate the medium gain.

Question two

- a- Explain the conditions which determine the radiations modes created in common laser.
- b- The length of optical cavity in He-Ne laser is 50 cm and the emitted wavelength is 0.6328 mm, Calculate
 - 1-The difference in frequency between adjacent longitudinal modes.
 - 2- The number of the emitted longitudinal mode at these wavelengths.
 - 3-The laser frequency.

Question three

Draw the energy levels diagram of He-Ne laser and discuss its operation, working and applications

Question four

Discuss in detail the construction, working of Ruby laser, its advantage, and its applications.

Good luck

AC 1	TANTA UNIVERSITY- Faculty of Science -Department of Physics							
n in the	EXAM FOR SENIORS STUDENTS OF PHYSICS							
1040	COURSE TITLE:	, s	COURSE CODE: PH4171					
DATE:	6-1-2021	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS				

	1- A- State Bloch's Theor	(20 Marks)					
	B- Define: Drude mod	el, the ground	state, ε_f and k_f .		(10 Marks)		
	2- A- Find the wavefunct	ion of a Free E	lectron in Three Din	nensions.	(10 Marks)		
	B- Deduce the electric. 3 - Define: 1. the dielectric materia 2. the relative permittiv 3. the dielectric constan 4. the dielectric strength 5. polar dielectrics.	l itý	in a metal described	I by the free electro	n model. (10Marks) (20 Marks)		
	4-Explain shortly the four	different mecl	anisms of polarization	on in dielectrics.	(20 Marks)		
1.	5- Mark in between brackets right or wrong. In the case of wrong statement write down the correction: (10 Marks) The atoms may be arranged in a solid in a regular geometric pattern (crystalline), or irregularly (an amorphous) depending the conditions in which it was formed but independent on the material itself. ()						
2.	In the free electron theory the potential. ()	he Hamiltonia	is given by the ope	rator of $p^2/2m + the$	operator of		
3.	The density of states is defi	ined as the nun	ber of orbitals per u	nit energy range.	()		
4.	The electrical resistivity of most metals is dominated at room temperature by collisions of the conduction electrons with lattice imperfection and impurity atoms and at helium temperature with lattice phonons. ()						
5.	$\psi^{(+)}(x) \propto \exp(i\pi x/a) + \epsilon$	$\exp(-i\pi x/a) \propto$	$\cos(\pi x/a)$	·			
	$\psi^{(-)}(x) \propto \exp(i\pi x/a) - \epsilon$ These two wavefunction exthe same potential energies	quations repres		es that will pile-up	electrons at		
	EXAMINER I	PROF. DR.	SAMIA AHMEI	O SAAFAN			

Question One: (15 MARKS)

- 1. Explain how the green-house effect and Earth's magnetic field protect our life.
- 2. What are the six characteristics of life?

Question Two: (15 MARKS)

Explain the following:

- a) A habitable planet.
- b) Galileo's contribution to astronomy.
- c) Kepler's laws.

Question Three: (10 MARKS)

1. Explain why Earth is silicon rich, but life is carbon-based?

Question Four: (10 MARKS)

Explain, with drawing, how CO2 regulates Earth's climate?

(Best wishes ---- Dr. Yasser Abdou)